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Linear systems:
Ar =b, AcecR™ ™ pecR™

where A1 exists
and lterative Methods for their solution

Preconditioning:

M € R™*™ which (in a sense | shall make clear later) is
an approximation to A

it should be feasible/inexpensive/quick to solve systems
with M

i.e. M1 exists and it’s action on a vector should be readily
computable
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Simple iteration: split A = M — N and for some xq
solve Mxy,, = Nxp_1+b, k=1,2,... (x)
M . splitting matrix or preconditioner (invertible)

Convergence: for any =g, {x} converges to the solution
S [ AMIN)| = |AT — M~1A)| < 1; contractive.

Because Mx = Nx — b, the error e, = x — x4, satisfies
e, = M INey_1 =T —-M1Ae,_1 =T — M 1A)*eq

Thus simple iteration essentially builds polynomials
ar(s) = s* = pp(1 — ),k = 1,2, ... such that

er = qp(I — M 1A)eg = pp(M~1A)eg

Strathclyde, June 2025 — p.4/22



Simple iteration: split A = M — N and for some xq
solve Mxy,, = Nxp_1+b, k=1,2,... (x)
M . splitting matrix or preconditioner (invertible)

Convergence: for any =g, {x} converges to the solution
S [ AMIN)| = |AT — M~1A)| < 1; contractive.

Because Mx = Nx — b, the error e, = x — x4, satisfies
e, = M INey_1 =T —-M1Ae,_1 =T — M 1A)*eq

Thus simple iteration essentially builds polynomials
qr(s) = sk = pe(l —s),k=1,2,...with px(0) = 1 s.t.

er = qp(I — M 1A)eg = pp(M~1A)eg
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Convergence: note |[A(I — M~1A)| < 1; contractive is
equivalentto A(M~1A) C B(1,1), the open unit ball
centred at 1.

If ever M —1 A has an eigenvalue with negative real part
then the simple iteration (x) certainly can not be contractive.

The above applies to any matrix. Now consider A, M real
symmetric:

If A = A’ inertia(A) = (p,n, z) where A has
positive, negative, zero eigenvalues
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Lemma: if inertia(A) # inertia(M) then M~1A has at
least one real negative eigenvalue =- (x) not convergent

Proof
T(0) =(1—60)A+ 6M is real symmetric = real
eigenvalues continuous in 8; T(0) = A,T(1) = M.

Different inertia = there is 8 € (0,1) with T(é\) singular.
That is

(1—0)A+6M andso A—6/(60 —1)M

is singulari.e. /(6 — 1) < 0is an eigenvalue of M~1A. o
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Example

0.5 -
.,

-05 1 | | 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

theta

C 0.33 —.05 —.29 0.01 0.01 ] " 0.14 0.10 0.25 0.09 —.28
—.05 0.36 —.11 —.22 —.19 0.10 —.07 0.02 0.08 —.11
A=| —.29 —.11 —-.32 0.11 -—.01 [,M=| 0.25 0.02 0.49 —.11 —.23
0.01 —.22 0.11 0.49 —.12 0.09 0.08 —.11 0.24 —.34

| 0.01 —.19 —.01 —.12 0.18 | | —.28 —.11 —.23 —.34 0.35 |

Ans-14 = —0.4098, —4.053, —19.747,1.7245 + 0.8315i
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Examples:
» A SPD, usually M SPD (Varga)

» A SIND, M SPD (eg. block diagonal preconditioning of
saddle point problems), inertia unchanged

M:(M*A)M~ 2 =M :AM =

IS symmetric and congruent to A so has the same
inertia as A (Sylvester’s Law of inertia)

» constraint preconditioning of saddle point systems

M:[w BT]’A:[H BT]

B 0 B 0

inertia(A) = inertia(M) and X(M~1A) all real,
positive when W, H SPD (Keller, Gould, W)

Multigrid: Braess-Sarazin Sy, dne 2025 o2



Note A SIND, M SIND is generally difficult (eigenvalues of
M1 A can be complex), but for saddle point problem

H BT
a=15 % |

H € R*"*", B € R™*™ inertia is (n, m,0) when H SPD

SO eg. Vanka splitting for Stokes (Navier-Stokes?) can aim
for this inertia

Note: Condition for contraction is necessary, not sufficient
eg.
1 0 —1 0

A=lo Sl
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Extensions

If inertia(A) = (p,n,0), inertia(M) = (p+ r,n — r,0)
(—p < r < n),then M—1A has |r| 4+ 2s real, negative
eigenvalues for some s € {0,1,2,..., |[BF2="|}.

r = —1,s = 1 in the above example

Positive real eigenvalues: consider
SO)=(1—-0)A+6(—M),

S(0) = A, S(1) = —M with

inertia(A) = (p,n,0),inertia(—M) = (n —r,p+ r,0)

M~1A has |p + r — n| + 2t real, positive eigenvalues for
some t € {0,1,2,..., min (LZP;’“J, | 2ner )}.
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But not only simple iteration: can build other polynomials!

o Chebyshev (or other) (semi-)iteration: based on
polynomials which are small on an interval or set

or

0 Krylov subspace methods: implicitly build optimal
polynomials:

e Conjugate Gradients (for A,M Symmetric and Positive
definite)

* MINRES (for A Symmetric, M Symmetric and Positive
definite)

e GMRES (for general A, M)
e ... and many other methods...
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e Conjugate Gradients (for A,M Symmetric and Positive
definite)

er = p(M~'A)eo, pi € 11,
IT; = degree k polynomials with p(0) = 1 such that
lek||% = e; Aey is minimised; equivalently
T — T €

span{M ~lrq, M 1AM 1rg,..., (M TA)* M 1ry}

where rp, = b — Az, = Aeg IS the residual for each k

e MINRES (for A Symmetric, M Symmetric and Positive
definite)

re = pe(M ™1 A)ro, pi € 11,
such that ||rg||pr—1 IS Minimised
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e GMRES (for general nonsymmetric A, M) minimises
the residual as in MINRES (but requires a full
Gram-Schmidt or Arnoldi method to orthogonalize the
basis for each Krylov subspace).
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Convergence

for diagonalisable M—1A: M—1A = XAX~1, A diagonal
matrix of eigenvalues A\;,5 =1,...,n

e Conjugate Gradients:

lex||.a .
< min max  |p(A)|
leoll A pElly,p(0)=1 Aco(M~1A)

, (ﬁ _ 1)’“’ Amax(M~1A)

< = .
\/E—|— 1 )\min(M_lA)

* MINRES:

|75 || nr— :
< min max [p(A)
|70l A2 pElly,p(0)=1 Aco(M~1A)
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Outcome:

convergence in few iterations if M —1 A has few
eigenvalues/clusters of eigenvalues but convergence for
indefinite can be slower
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* GMRES:

|7k || e _ .
| X || X~  min max |p(A)|
pEll,,p(0)=1 A€o(M—1A)

Irollns

can be huge even if nicely distributed eigenvalues! In
fact significant negative results exists:

Theorem (Greenbaum, Ptak and Strakos, 1996)

Given any set of eigenvalues and any monotonic
convergence curve, then for any b there exists a matrix
B having those eigenvalues and an initial guess xg such
that GMRES for Bx = b with xq¢ as starting vector will
give that convergence curve.

Nevertheless, heuristic ideas abound!
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Preconditioning: some examples
A SPD: Domain Decomposition, (Algebraic) Multigrid,. . .
A SIND: generally hard problems here: Helmholiz:

—Viu — k*u = f,
with appropriate boundary conditions
inertia depends on k, discretisation,. ..

but for saddle point systems: block diagonal/block triangular
preconditioners generally based on Schur-complement
approximations

A Toeplitz (constant diagonals) or block Toeplitz:
Circulant/block circulants
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vy =ay+f,  y(to) = Yo
discretise: e.g.

= Oay*tt + (1 — 0)ay® + £*, y° = yo,

k=0,1,...,2 with £ = T gives

yr] [t A+ a—0)7T)y° ]
y2 sz
B|Y | = T f? ,
Rami| T f* ]
—_—— N ~ _
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where the ¢ x ¢ coefficient matrix B Is

b=1—al01,c=—-1—a(l —0)T.

Precondition with

b
c b
C

b

b
c b
C

b

C

periodic! = FFT

b
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Block preconditioning:

M, Pa G\ (U R,
Py M, 0| | R
D M3 E - EP

—P3y —M{ Mg ) \II Rn
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Thanks for listening
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